Pan-STARRS Calibration Strategy

Pan-STARRS 1: The 3π Survey Concept

- 5466 fields for 3π : 60 epochs ($\delta > -30$)
- rizy: 12x35 sec, g: 12x60 sec
- all observations at opposition on asteroid cadence
- 1 mmag photometry requirement (riz), higher precision goals

Photmetry Calibration Strategy

- Instrument Characterization
 - Stubbs Calibration Screen
 - Frequent, in-situ filter transmission function
 - Extensive 'metadata' stream in database
- Empirical System Response
 - Chip-to-Chip Color Terms
 - Finer Spatial variation if needed
- Atmosphere Characterization
 - Atmospheric Transparency Monitor(s)
 - Heavy Standards Monitoring
 - Extreme Spatial Overlaps

Stubbs Calibration Screen

- Fiber fed from light source
- Continuum source for flat-field
- Monochrometer for filter trace
- Advantages
 - Repeatability

500

600

700

Wavelength (nm)

800

- Uniformity
- Stability

Throughput

.2

400

Shuttered light source

Flat-field Correction & Chip-to-chip colors

- Flat-field correction based on stellar photometry
- Measures all large-scale static flat-field errors
- Includes geometric correction
- Chip-to-chip color terms (finer grid if needed)

GPC1 photflat dither pattern

Observing Strategy: Extensive Dithers + Reference Fields

- repeated tessalations (12 per filter) with larger dithers
 - solve for a single photometric system using overlaps
- hourly reference star field (internal standards)
 - tie down low-frequency atmosphere changes & accumulated errors

initial tessalation

6 passes

SkyProbe

SkyProbe @ Pan-STARRS

- larger detector (2048²)
- back-side illumination
- larger aperture (120 mm)
- 5 filters (grizy)
- better sampling (5 arcsec)
- controlled focus

SkyProbe @ CFHT

